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Numerical Analysis of Arbitrarily
Shaped Discontinuities Between

Planar Dielectric Waveguides
with Different Thicknesses

KOICHI HIRAYAMA, MEMBER, IEEE, AND MASANORI KOSHIBA, SENIOR MEMBER, IEEE

.-tbstract —An approach that combines the finite-element and boundary-

element methods is applied to the analysis of arbitrarily shaped discontinu-

ities between planar dielectric wavegnides with different thicknesses. The

fields interior and exterior to the region enclosing the diseontinoities are

treated by the finite-element and the boundary-element method, respec-

tively. The wavegoide regions connected to the dkcontinuities are handled

by analytical solutions. In this approach, scattering characteristics of the

discontinuities can be accurately evaluated, and far-field radiation patterns

can be easily calculated. To show the vtildity and usefulness of this

approach, the scattering characteristics of a step, a staircase transformer,

and a tapered transformer are analyzed. Also, a simple equivalent network

approach is introduced for estimating the reflection and transmission
characteristics of planar dielectric wavegnide disconthsuities, and the effec-

tiveness of this simple approach is confirmed by comparing the numerical

results with those of the approach that combines the finite-element and

boundary-element methods.

I. INTRODUCTION

D ISCONTINUITIES in planar dielectric waveguides

play an important role in millimeter-wave, submil-

limeter-wave, and optical systems. Various theoretical ap-

proaches have therefore been developed for the problem of

planar dielectric waveguide discontinuities. Recently, the

integral equation method (IEM) [1]–[4], the boundary-ele-

ment method (BEM) [5], the finite-element method (FEM)

[6], and a combination of the finite-element and

boundary-element methods (CFBEM) [7] have been pre-

sented for the analysis of discontinuities with arbitrarily

shaped boundaries. In [1]–[4] using the IEM, however,

only the weakly guiding structure is considered. Also, the

BEM cannot be effectively applied to the problem of

inhomogeneous discontinuities [5]. The FEM and CFBEM

are very useful for arbitrarily shaped and inhomogeneous

discontinuities. In [6] using the FEM, however, the evalua-

tion of radiation patterns seems to be difficult since the

normalized radiated power P, is estimated by the relation

P,= 1 – Illol 2 – Il”ol 2, where RO and TO are, respectively,

the reflection and transmission coefficients of the funda-
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Fig. 1. Geometry of the problem.

mental guided mode. The CFBEM may be useful for the

evaluation of scattering characteristics including radiation

patterns. In [7] using the CFBEM, however, a method of

evaluating the radiation patterns is not shown, and only

the discontinuities in a uniform planar dielectric wave-

guide are analyzed.

In this paper, the CFBEM is applied to the analysis of

discontinuities between planar waveguides with different

thicknesses. The scattering characteristics of a step, a stair-

case transformer, and a tapered transformer are analyzed,

and the normalized reflection, transmission, and radiated

powers, as well as the radiation patterns for these disconti-

nuities, are presented. The accuracy of the CFBEM is

checked by comparing the numerical results with those of

the well-known Rozzi method [8]. Also, a simple equiva-

lent network approach is introduced for estimating the

reflection and transmission coefficients of planar dielectric

waveguide discontinuities. The effectiveness of this simple

approach is confirmed by comparing the results of the

equivalent network method with those of the CFBEM.

II. MATHEMATICAL FORMULATION

Consider the symmetric (relative to y = O) mode excita-

tion of the symmetric planar dielectric waveguide shown in

Fig. 1. The boundary r. is placed at infinity (y= co) and

the boundary ri = rIF + r,B (i= 1, 2) connects the disconti-

nuity region xl < x < X2 to the uniform waveguide i, where

d, and n, ~ (j= 1,2) are the half-thickness and the refrac-

tive index of the waveguide i (rzZl > n ,Z), respectively. The

region fl~ surrounded by the boundary 17F= rl~ + 1’1~ + 17~
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Fig. 2. Step discontinuity (n, =6, nz = 1, dl = A/10m, and dz =
A/2m).

and the symmetry plane (y = O) completely encloses the

discontinuity region, and the region !JB is surrounded by

the boundaries 17~= rl~ + rz~ + r~ and ro.

We assume that there is no variation in the z direction

and that the fundamental mode (m = O) of unit amplitude

is incident from the left side of waveguide 1 in Fig. 1.

Applying the FEM with six-node triangular elements

and the BEM with three-node line elements to !ilF and !d~,

respectively, and introducing the analytical solutions in

waveguides 1 and 2, we obtain the following final matrix

equation [7]:

l-------------------l
[A’] ! -[B’]

[H’] ~ - [G’]

[1][0][0] ~ -[ Z] JO][O]

[0][1][0] ~ [0]-[2]2[0]

{+}1
{0}2
{+}3———-
{+}1
{+}2
{+}3

.

{0}
{0}

———.
{f},
{0}

Fig. 4.

(1)

The components of the vectors {@}, and {+}, (i= 1,2, 3)

are the values of @ and ~ at the nodes on “I’,,” respectively,

where

qi=Ez for TE modes (2a)

~=Hz for TM modes ~ (2b)

and

+ = – A &p/ilx on rl (3a)

4 = A &p/i3x on rz (3b)

+ = - A &$/(3y on r~. (3C)

Here A is the free-space wavelength. The matrices [A’] and

[B’] are generated by the FEM, the matrices [H’] and [G’]

are generated by the BEM, and the matrix [Z]i (i = 1, 2) is

obtained from the analytical approach for the waveguide i.

Also, the vector {f} ~describes the incident wave, {O} is a

null vector, [0] is a null matrix, and [1] is a unit matrix.

The solutions of (1) allow the determination of the

normalized reflection power IR ~ 12 and normalized trans-
mission power IT~ 12 of the m th mode, and the normalized

radiated power P, [7]. Also, setting x – x, = R cos d

(i=l,2) and y = Rsin6 (x,, R, and 6 are shown in Fig. 2,

where w/2 <6< v in waveguide 1 and O <6< w/2 in

waveguide 2) and using the saddle point method under the

assumption of R >> A, we can evaluate the far-field radia-
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Fig. 3. Far-field radiation pattern of the step.
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Staircase transformer (nl = ~, )12=1, dl = A,/20n, dz = A
and d~ = A/6v).
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tion pattern as follows:

AM’)-l{mo)}1T{+}112 /(Ao~2) (4a)

PO= T n,zkosing (4b)

kO = 2T/;i. (4C)

Here &O is the phase constant of the fundamental mode in

waveguide 1; the double signs – and + are for i = 1 and

2, respectively; the superscript T denotes a transpose; and

the vector { &(p)}i is the same as (9d) in [7].

III. COMPUTED RESULTS

The convergence of the solutions of the CFBEM has

been discussed in detail in [7] and is omitted here. To save

space, only the results of the fundamental TE mode are

shown in this section.

First, we consider the step shown in Fig. 2. The normal-

ized reflection, transmission, and radiated powers of the

step have been given in [7].

Fig. 3 shows the radiation pattern. The parameters c, D,

and y~ are defined in [7]. Our results agree well with those

of Rozzi [8]. Comparing our results (Fig. 3 in the present

paper and fig. 7 in [7]) with those of Rozzi [8, figs. 4 to 6],

it is confirmed that, using the CFBEM, we may evaluate

the scattering characteristics including the radiation pat-

tern with good accuracy.

Next, we consider the staircase transformer shown in

Fig. 4.
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Fig. 5. Scattering characteristics of the staircase transformer (c = 4,

D/i =3, and Y3/~ = 2).

Fig. 5 shows the scattering characteristics for the case

where the fundamental TE mode is incident from the left
side of waveguide 1. Here, the solid lines in parts (a) and

(b) of Fig. 5 represent the results of the CFBEM, P, is the
total power, namely P,= IR012 + IT012+ P,, and Fig. 5(c)

shows the forward radiation pattern, i.e., pz,( (3). The

reference planes in Fig. 4 for evaluating the phases of the

reflection and transmission coefficients are, respectively,

x= Oandx=b.

The staircase transformer is designed so as to satisfy

&O= &o&o, where &,, & and &o are the phase con-
stants of the fundamental TE mode in waveguide 1, wave-

guide 2, and the middle waveguide, respectively. Hence,

when j330b = 17r/2, that is, b/d2 = lw/2j330d2 = 1.08x [

(1=1,3,5,. . ), the impedance matching condition is

2=

‘“= (Zl+ Z2)cos(/3,0b)+ j2=sin(&Ob)
. (5b)

The sum of Illol* and ITOI2 always equals 1, and the

radiation loss is not taken into account at all.

The broken lines in parts (a) and (b) of Fig. 5 represent

the results of (5), where the dotted lines show the discon-

tinuous change of the phase by 180°.

On the other hand, since we cannot replace the tapered

transformer in Fig. 6 by the equivalent network directly,

we subdivide the tapered region into a number of uniform

waveguides with the same length and consider the equiva-

lent network shown in Fig. 9. The normalized reflection

and transmission coefficients are given by

AZZ + B – CZ1Z2 – DZ1
R.=

AZ1 + B + CZ1Z2 + DZ1
(6a)

2=
To=

AZ2 + B + CZ1Z2 + DZ1 “
(6b)

Fig. 6. Tapered transformer (nl = K, nz = 1, dl = A/20n, and dz =

a/27T).

achieved. In fact, we observe in Fig. 5(a) that the magni-

tudes of the reflection coefficient reach a minimum near

b/d2 = 1.08 and 3.25. Also, we find in Fig. 5(c) that the

main lobe of the radiation pattern is in the direction

of 20°.

Finally, we consider the tapered transformer shown in

Fig. 6.

Fig. 7 shows the scattering characteristics for the case

where the fundamental TE mode is incident from the left

side of waveguide 1. As the value of b increases, that is, as

the taper configuration becomes gentler, the magnitudes of

the reflection coefficient are smaller, but there is a signifi-

cant amount of radiation, 20 to 30 percent, all over the

range of O < b/d2 <4. We note that the behavior of the

phase of the reflection coefficient in Fig. 7 differs signifi-

cantly from that in Fig. 5.

Now we consider the simple equivalent network shown

in Fig. 8 for the staircase transformer in Fig. 4. Here, Z, is

the characteristic impedance for TE modes and is given by

up “/Plo, where w is the angular frequency and PO is the

permeability of free space. Using the impedance matching

condition Z: = 2122, from the equivalent network in Fig.

8 the normalized reflection and transmission coefficients

are given as follows:
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Fig. 7. Scattering characteristics of the tapered transformer ( c = 4,
D/A =3, and y3/~ = 2).

Fig. 8. Equivalent network for the staircase transformer.

Fig. 9. Equivalent network for the tapered transformer (a = b/(N – 2)).

A, B, C, and

where

[~]=

D are expressed as

()
: ; = [F3][&] . . . [FN]

cos ( /?loa ) jZz sin (j3toa)

(~/zz) Sin(Btoa) cos(B1o~)

(7)

(8)

The broken lines in parts (a) and (b) of Fig. 7 represent the

a= b/( N–2).

results of (6) with N =12 ‘(&– 2 =10). -

It is found from Figs. 5 and 7 that in the magnitudes of

the reflection and transmission coefficients, the solid and

broken lines behave quite similarly, but differ in the values

themselves since no radiation loss is taken into account in

the equivalent network model.

In the phases of the transmission coefficient in Fig. 5,

the results of the equivalent network approach are in

excellent agreement with those of the CFBEM. On the

other hand, in the phases of the reflection coefficient in

Fig. 5, the results of the CFBEM vary gradually while

those of the equivalent network approach change discon-

tinuously.

From a physical point of view, the phases of the reflec-

tion coefficient for the case b = O, namely, a step, should

be somewhat shifted from just 180° or :160°, as represented

by the solid lines. This phase shift is not taken into

account in the equivalent network model.

It is confirmed from Figs. 5 and 7 that the equivalent

network approach is very useful for estimating the reflec-

tion and transmission characteristics of planar dielectric

waveguide discontinuities.

IV. CONCLUSIONS

Discontinuities between plan; dielectric waveguides

with different thicknesses were analyzed by using the

CFBEM. First we calculated the far-field radiation pattern

for a step and confirmed that, in the CFBEM, the scatter-

ing characteristics including the radiation pattern can be

accurately evaluated. Next we computed the scattering

characteristics for a staircase transformer and a tapered

transformer by using the CFBEM and the simple equiva-

lent network approach. It was found that the equivalent

network model is very useful for estimating the reflection

and transrnissidn characteristics {of planar dielectric wave-

guide discontinuities.

We intend to extend the CFBEM to discontinuities in an

asymmetric planar dielectric wavcguide and to improve the

equivalent network method for m~ore precise discussions in

the future.
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