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Numerical Analysis of Arbitrarily
Shaped Discontinuities Between
Planar Dielectric Waveguides
with Different Thicknesses

KOICHI HIRAYAMA, MEMBER, IEEE, AND MASANORI KOSHIBA, SENIOR MEMBER, IEEE

Abstract — An approach that combines the finite-element and boundary-
element methods is applied to the analysis of arbitrarily shaped discontinu-
ities between planar dielectric waveguides with different thicknesses. The
fields interior and exterior to the region enclosing the discontinuities are
treated by the finite-element and the boundary-element method, respec-
tively. The waveguide regions connected to the discontinuities are handled
by analytical solutions. In this approach, scattering characteristics of the
discontinuities can be accurately evaluated, and far-field radiation patterns
can be easily calculated. To show the validity and usefulness of this
approach, the scattering characteristics of a step, a staircase transformer,
and a tapered transformer are analyzed. Also, a simple equivalent network
approach is introduced for estimating the reflection and transmission
characteristics of planar dielectric waveguide discontinuities, and the effec-
tiveness of this simple approach is confirmed by comparing the numerical
results with those of the approach that combines the finite-element and
boundary-element methods.

I. INTRODUCTION

ISCONTINUITIES in planar dielectric waveguides

play an important role in millimeter-wave, submil-
limeter-wave, and optical systems. Various theoretical ap-
proaches have therefore been developed for the problem of
planar dielectric waveguide discontinuities. Recently, the
integral equation method (IEM) [1]-[4]. the boundary-ele-
ment method (BEM) [5], the finite-element method (FEM)
[6], and a combination of the finite-element and
boundary-element methods (CFBEM) [7] have been pre-
sented for the analysis of discontinuities with arbitrarily
shaped boundaries. In [1]-[4] using the IEM, however,
only the weakly guiding structure is considered. Also, the
BEM cannot be effectively applied to the problem of
inhomogeneous discontinuities [5]. The FEM and CFBEM
are very useful for arbitrarily shaped and inhomogeneous
discontinuities. In [6] using the FEM, however, the evalua-
tion of radiation patterns seems to be difficult since the
normalized radiated power P, is estimated by the relation
P =1—|Ry|*—|T,|% where R, and T, are, respectively,
the reflection and transmission coefficients of the funda-
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Fig. 1. Geometry of the problem.

mental guided mode. The CFBEM may be useful for the
evaluation of scattering characteristics including radiation
patterns. In [7] using the CFBEM, however, a method of
evaluating the radiation patterns is not shown, and only
the discontinuities in a uniform planar dielectric wave-
guide are analyzed.

In this paper, the CFBEM is applied to the analysis of
discontinuities between planar waveguides with different
thicknesses. The scattering characteristics of a step, a stair-
case transformer, and a tapered transformer are analyzed,
and the normalized reflection, transmission, and radiated
powers, as well as the radiation patterns for these disconti-
nuities, are presented. The accuracy of the CFBEM is
checked by comparing the numerical results with those of
the well-known Rozzi method [8]. Also, a simple equiva-
lent network approach is introduced for estimating the
reflection and transmission coefficients of planar dielectric
waveguide discontinuities. The effectiveness of this simple
approach is confirmed by comparing the results of the
equivalent network method with those of the CFBEM.

II. MATHEMATICAL FORMULATION

Consider the symmetric (relative to y = 0) mode excita-
tion of the symmetric planar dielectric waveguide shown in
Fig. 1. The boundary I}, is placed at infinity (y = c0) and
the boundary I, =T, + I, (i =1,2) connects the disconti-
nuity region x; < x < x, to the uniform waveguide i, where
d, and n,; (j=1,2) are the half-thickness and the refrac-
tive index of the waveguide i (n,; > n,,), respectively. The
region {1, surrounded by the boundary I'y =T, + T, + T}
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Fig. 2. Step discontinuity (n; =V5, n, =1, d;=A /107, and d, =
A/2w).

and the symmetry plane (y = 0) completely encloses the
discontinuity region, and the region £, is surrounded by
the boundaries I'; =T, + I, + I}, and T,

We assume that there is no variation in the z direction
and that the fundamental mode (m = 0) of unit amplitude
is incident from the left side of waveguide 1 in Fig. 1.

Applying the FEM with six-node triangular elements
and the BEM with three-node line elements to €, and Q,,
respectively, and introducing the analytical solutions in
waveguides 1 and 2, we obtain the following final matrix
equation [7]:
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¢=Ez for TE modes (22)

¢=H:z for TM modes (2b)
and

Yy=—-A0d¢/0x on I (3a)

v=Ad¢/dx on I, (3b)

v=—Ad¢/dy on I3. (3¢)

Here A is the free-space wavelength. The matrices [ 4’] and
[B'] are generated by the FEM, the matrices [ H’] and [G’]
are generated by the BEM, and the matrix [Z]; (i =1,2) is
obtained from the analytical approach for the waveguide i.
Also, the vector { f }, describes the incident wave, {0} is a
null vector, [0] is a null matrix, and {1] is a unit matrix.
The solutions of (1) allow the determination of the
normalized reflection power |R,|* and normalized trans-
mission power |7, | of the mth mode, and the normalized
radiated power P. [7]. Also, setting x —x,= Rcosf
(i=1,2) and y = Rsinf (x,, R, and 8§ are shown in Fig, 2,
where 7/2 <@ <7 in waveguide 1 and 0 <8 <#/2 in
waveguide 2) and using the saddle point method under the
assumption of R > A, we can evaluate the far-field radia-
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Fig. 3. TFar-field radiation pattern of the step.
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Fig. 4. Staircase transformer (n, =v/5 , n, =1, d, = /207, d, = \ /2,
and dy = A /6).

tion pattern as follows:

2 (0) ~[{8(eo)} T 1) /(Bio¥)

po= T n,kysind

(4a)
(4b)
(4c)

Here B, is the phase constant of the fundamental mode in
waveguide 1; the double signs — and + are for i=1 and
2, respectively; the superscript T denotes a transpose; and
the vector { £(p)}; is the same as (9d) in [7].

ko=2m/A.

III. CoMPUTED RESULTS

The convergence of the solutions of the CFBEM has
been discussed in detail in [7] and is omitted here. To save
space, only the results of the fundamental TE mode are
shown in this section.

First, we consider the step shown in Fig. 2. The normal-
ized reflection, transmission, and radiated powers of the
step have been given in [7].

Fig. 3 shows the radiation pattern. The parameters ¢, D,
and y, are defined in [7]. Our results agree well with those
of Rozzi [8]. Comparing our results (Fig. 3 in the present
paper and fig. 7 in [7]) with those of Rozzi [8, figs. 4 to 6],
it is confirmed that, using the CFBEM, we may evaluate
the scattering characteristics including the radiation pat-
tern with good accuracy.

Next, we consider the staircase transformer shown in
Fig. 4.
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Fig. 5. Scattering characteristics of the staircase transformer (c= 4,
D/A=3,and y, /A =2).

Fig. 5 shows the scattering characteristics for the case
where the fundamental TE mode is incident from the left
side of waveguide 1. Here, the solid lines in parts (a) and
(b) of Fig. 5 represent the results of the CFBEM, P, is the
total power, namely P,=|R,|*+ |T;|> + P., and Fig. 5(c)
shows the forward radiation pattern, ie., p,.(8). The
reference planes in Fig. 4 for evaluating the phases of the
reflection and transmission coefficients are, respectively,
x=0and x=b.

The staircase transformer is designed so as to satisfy
B3 = B1oBso, Where Bio, By, and B, are the phase con-
stants of the fundamental TE mode in waveguide 1, wave-
guide 2, and the middle waveguide, respectively. Hence,
when Byb=In/2, that is, b/d,=In/2B5,d,=1.08X1
(I=1,3,5,---), the impedance matching condition is
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Fig. 6. Tapered transformer (n, =5, n, =1, d, = A /207, and d, =
A/2a).

achieved. In fact, we observe in Fig. 5(a) that the magni-
tudes of the reflection coefficient reach a minimum near
b/d,=1.08 and 3.25. Also, we find in Fig. 5(c) that the
main lobe of the radiation pattern is in the direction
of 20°.

Finally, we consider the tapered transformer shown in
Fig. 6.

Fig. 7 shows the scattering characteristics for the case
where the fundamental TE mode is incident from the left
side of waveguide 1. As the value of b increases, that is, as
the taper configuration becomes gentler, the magnitudes of
the reflection coefficient are smaller, but there is a signifi-
cant amount of radiation, 20 to 30 percent, all over the
range of 0 <b/d, < 4. We note that the behavior of the
phase of the reflection coefficient in Fig. 7 differs signifi-
cantly from that in Fig. 5.

Now we consider the simple equivalent network shown
in Fig. 8 for the staircase transformer in Fig. 4. Here, Z, is
the characteristic impedance for TE modes and is given by
wpo/B,g, where w is the angular frequency and g, is the
permeability of free space. Using the impedance matching
condition Zj = Z,Z,, from the equivalent network in Fig.
8 the normalized reflection and transmission coefficients
are given as follows:

_ (Z,— Z,)cos( Byb)
(Z,+ Z,)cos(Bah) + i2Z,Z, sin ( B3b)

27,7,
(Zl + Zz)cos(ﬁmb) +J2y2,Z, Sin(lgmb) ‘

The sum of |Ry|* and |Ty|* always equals 1, and the
radiation loss is not taken into account at all.

The broken lines in parts (a) and (b) of Fig. 5 represent
the results of (5), where the dotted lines show the discon-
tinuous change of the phase by 180°.

On the other hand, since we cannot replace the tapered
transformer in Fig. 6 by the equivalent network directly,
we subdivide the tapered region into a number of uniform
waveguides with the same length and consider the equiva-
lent network shown in Fig. 9. The normalized reflection
and transmission coefficients are given by

AZ,+ B—CZ,Z,— DZ,

(5a)

0

(5b)

0

= 6
0" 4Z,+ B+ CZ,Z,+ DZ, (62)
2Z,Z
142 (6b)

T, = .
° 4Z,+B+CZ,Z,+ DZ,
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Fig. 7. Scattering characteristics of the tapered transformer (c=4,
D/A=3,and y, /A =2).
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Fig. 8. Equivalent network for the staircase transformer.
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Fig. 9. Equivalent network for the tapered transformer (a = b/(N —2)).

A, B, C, and D are expressed as

(& 5)=IBlE)-[£] 7)

where
[F] = COS(Bth) JZI Sin(Ban)
o\ /Z)sin(Bpa) cos(Boa) |
a=b/(N-2). (8)

The broken lines in parts (a) and (b) of Fig. 7 represent the
results of (6) with N =12 (N -2 =10).

It is found from Figs. 5 and 7 that in the magnitudes of
the reflection and transmission coefficients, the solid and
broken lines behave quite similarly, but differ in the values
themselves since no radiation loss is taken into account in
the equivalent network model.

In the phases of the transmission coefficient in Fig. 5,
the results of the equivalent network approach are in
excellent agreement with those of the CFBEM. On the
other hand, in the phases of the reflection coefficient in
Fig. 5, the results of the CFBEM vary gradually while
those of the equivalent network approach change discon-
tinuously.

From a physical point of view, the phases of the reflec-
tion coefficient for the case b = 0, namely, a step, should
be somewhat shifted from just 180° or 360°, as represented
by the solid lines. This phase shift is not taken into
account in the equivalent network model.

It is confirmed from Figs. 5 and 7 that the equivalent
network approach is very useful for estimating the reflec-
tion and transmission characteristics of planar dielectric
waveguide discontinuities.

IV. CONCLUSIONS

Discontinuities between planar dielectric waveguides
with different thicknesses were analyzed by using the
CFBEM. First we calculated the far-field radiation pattern
for a step and confirmed that, in the CFBEM, the scatter-
ing characteristics including the radiation pattern can be
accurately evaluated. Next we computed the scattering
characteristics for a staircase transformer and a tapered
transformer by using the CFBEM and the simple equiva-
lent network approach. It was found that the equivalent
network model is very useful for estimating the reflection
and transmission characteristics of planar dielectric wave-
guide discontinuities.

We intend to extend the CFBEM to discontinuities in an
asymmetric planar dielectric waveguide and to improve the
equivalent network method for more precise discussions in
the future.
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